
Be Your
Company’s IT
Hero: Be
Excellent in
Crisis

PUBLIC © 2023 OPSVIEW. 1

Treating failure as inevitable provides a basis for
engineering robust, high-performance solutions

SOLUTION BRIEF

Failure is normal. Experience of failure makes us stronger –
gives us ‘grit’ and resilience and makes us, ultimately, more
prone to succeed.

This is, at least, what they tell the privileged tech bros, burning
through angel rounds. Am I right? The rest of us are counseled
that failure (as in service outages) is disastrously costly:
inflicting damage to revenue and business reputation, so a must
to avoid.

And yet, we IT Heroes, too, can profit from the understanding
that failure is normal. In fact, failure is happening all the time
in complex systems, and is often no big deal. We engineer
deployments and build applications with this understanding: that
our jobs are very much about delivering uninterrupted services,
despite the fact that things are failing all the time in lower levels
of our application stacks and infrastructure.

Knowing this, the question on the table is: how can we further
leverage and extend our understanding of systems failure,
to better and more efficiently provide uninterrupted service,
while also making ourselves look smart and earning raises and
promotions?

Your Circus, Your Monkeys
First, some homely folk wisdom. There’s an old and deeply-
cynical Polish expression – Nie mój cyrk, nie moje małpy
(literally: “Not my circus, not my monkeys”) – that lets one
disclaim responsibility for an evolving, chaotic scenario with
obvious incipient and catastrophic failure modes. The perfect
opportunity to use this saying is when you’ve given the circus-
owner some really good advice, which has been ignored – and
you’re now standing on the sidelines, watching the predicted
disaster unfold. You can earn extra international amity points

by using this expression in combination with the classic Gallic
Shrug, which conveys roughly the same idea.

The thing is, if you’re an IT Hero, it actually is your circus, and
those are your monkeys. Luckily, just like Matt Damon in the film
The Martian, you can “science the heck out of this.”

Monkey Minding for IT Heroes
Before we get to the science, be advised that you can also
common-sense the heck out of this, with the help of your team.

Recall from our solution brief on Proactive IT that we
recommended creating and fully resourcing a team to do
proactive maintenance on systems and infrastructure. Extending
this idea, here are some more:

Review on-call frequently. Aspiring IT Heroes may already
be assigned rotations in a well-thought-out and properly-
incentivized on-call structure. It makes sense to review these
frequently at every level, and make sure managers and leaders
are provided with information about current events, where
peoples’ heads are at, conflicting responsibilities, incipient
burnouts, etc., so they can reallocate resources in healthier,
more effective ways.

Limit on-call time and night shifts. This is serious stuff. The
most effective, responsive on-call teams in the world strictly

https://www.opsview.com/
http://www.untours.com/blog/gallic-shrug/
http://www.untours.com/blog/gallic-shrug/
https://twitter.com/neiltyson/status/610997574808395777
https://landing.google.com/sre/sre-book/chapters/being-on-call/
https://www.opsview.com/resources/system-administrator/solution-briefs/it-hero-proactive-not-reactive

limit the time individual employees spend on call and under
stress, because they have very demanding SLOs and need
on-call staffers to be fully (and also non-self-destructively)
engaged. (Those are, after all, your monkeys.) They are
extremely careful in assigning night shift work, because they
know that working night shifts is bad for health and service
quality – much less effective than “follow the sun” rotations that
put people on call during normal waking/working hours.

Train well and gently. Google and other top-performing
organizations also insist on humane training of their SREs,
usually by hands-off shadowing of more experienced engineers,
followed by highly-supervised hands-on experience – the idea
being to help newcomers feel more confident and less stressed
out while learning. These organizations are also insistent
about sharing out the on-call burden very widely – in particular,
requiring that application developers take on-call responsibility
for the things they create (avoids “throwing junk over the
wall and letting Ops lose sleep over it”) and making sure that
managers, up to a certain level, are included in on-call rotations.

Don’t let on-call folks become complacent. They also
recognize that insufficient stress leads to detachment and
erosion of knowledge. Google works very hard to balance stress
with what they call “On-Call Underload,” where engineers don’t
spend enough time on-call to polish fast-reaction forensic
skills, or are on-call to manage only “quiet” systems that rarely
experience issues.

Rehearse! On-call folks at the largest organizations often report
that automated systems frequently slot them into rotations
– effectively making them a part of crisis response teams –
without managers taking the time to actually build out teams

PUBLIC © 2023 OPSVIEW. 2

opsview.com

of folks scheduled to work together, to replace one another on
shifts, or to make various on-call tiers mutually aware of each
other before people are obliged to work together under
pressure. Don’t be that manager. Team members need to know
one another, understand each others’ skills, and practice before
being thrown into the deep end of the pool.

The science part comes in when you start exploring the
notion of using controlled chaos to better understand the
failure modes of large systems. The touchstone for this is an
intermittently maintained open source manifesto document
called Principles of Chaos, which outlines a methodology for
measuring steady-state system performance, and then applying
empirical principles to determine how much confidence
you should have in a system’s resilience. Some of the most
technologically-advanced organizations in the world apply these
principles in an (apparently mostly successful) effort to force
engineers to build systems that deal better with failure. There
are even sophisticated tools, like Netflix Chaos Monkey, that
help automate the random failure of resources in production.
Adopt this kind of monkey at your own risk.

How Does This Connect with
Monitoring?
Obviously, monitoring connects to all of this: particularly to the
details of how mature monitoring products let on-call operators
visualize system and component states, drill down into deep IT
stacks, triage and determine root causes of issues. What’s also
clearly central, however, is how mature enterprise monitoring
platforms let you structure notifications and integrate with
systems that accelerate effective on-call response.

Sophisticated notification capabilities should be built in (or
easy to bolt on) . Fully mature monitoring platforms should have
notification capabilities adequate for most needs, and the ability
to easily integrate with purpose-built notification platforms
to gain support for extra features, conditional escalation, etc.
Designated users should be able to prevent escalation of non-
critical events and keep from being pestered by repeated alerts
when repairs are underway.

Integration with preferred or corporate standard ITOM,
ticketing, and other backbone workflow support systems
should be simple and powerful. Your monitoring solution
should be able to connect with back-end systems, SaaS
services, and other tools to help on-call folks see what’s wrong,
collaborate to fix it, and resolve the issue, all from within familiar
environments and using familiar tools.

Experience of failure makes

us stronger – gives us grit

and resilience and makes

us, ultimately, more prone

to succeed.

https://www.opsview.com/
https://www.opsview.com/
https://www.opsview.com/
mailto:sales%40opsview.com?subject=
https://landing.google.com/sre/sre-book/chapters/being-on-call/#xref_oncall_underload
http://principlesofchaos.org/
https://github.com/Netflix/chaosmonkey

