
Be Your Company’s
IT Hero: Move Fast -
Don’t Break Things

PUBLIC © 2023 OPSVIEW. 1

SOLUTION BRIEF

Speed gives advantage, so being an IT Hero has lots to do
with acceleration. Help your company get to market first with
a novel solution, and you can capture consumer, media, and
funding mindshare. Develop a reputation for delivering new
features quickly, and you can stop worrying so much about
customer churn. Learn to fix outages in 1/10th the time (or
in no time at all), and you can save millions, protect your
organization against existential risks, and set yourselves up to
move even faster.

This series of solution briefs will offer perspectives on how
IT Heroes can help their organizations move faster (while
also avoiding breaking things and making more right, and
fewer wrong moves). Where the technical rubber meets the
road, however, much of what we’ll talk about comes down to
automation: using software to develop, deploy/scale, monitor,
and repair software better.

Eliminating manual toil using tools like Ansible, Puppet, Chef, or
Terraform is one of the best resource investments prospective
IT Hero/ines and their teams can make, for two reasons.

First, IT automation efforts almost always pay off in (often
impressive) savings and gains. Moreover, these gains tend to
be linear: any automation is good, more is almost always better.
While snarky notions of “diminishing returns,” “automation as
distraction,” and “the Sorceror’s Apprentice” (see note about
‘FFFFFF it deleted everything!’) perpetually haunt automation
efforts, in practice, these problems rarely materialize. The fact
that underlying technical dependencies are always changing
encourages creation of practical automation solutions that
are functional without being overly elaborate (and see below
about “immutability”). And the fact that task scales are
always increasing means that eventual payoffs for any given
automation effort are virtually assured.

In fact, unless your organization is already very disciplined
about doing the right stuff, investing in automation may be a
surer bet than delivering new features or services. (See metrics
cited by Forrester, in Harvard Business Review, and elsewhere,
suggesting that only one-third of product features deliver
upsides.)

Second, automation helps you consolidate gains made while
sprinting, and avoid the pitfalls of moving faster. IT cultures
that automate by default end up preserving configurational
arcana in centralized deployment codebases (“infrastructure
as code”), rather than in separate docs, “golden images,” or

actual deployments. Having this “single source of actionable
truth” makes deployments and other processes repeatable,
optimizable, extensible – adding speed, creating de-facto
organizational standards, and eliminating production-side
manual ad-hockery (hackery?) and attendant risks (i.e., the
phenomenon of “trying to fix the engines while the plane is in
the air”).

Instead, automation-forward IT organizations tend to abandon
(read: forbid) hackery completely in favor of principles like
“immutability,” where manual changes are never made on
infrastructure (except occasionally, on sequestered dev systems,
as part of research), all tweaks are made in config/automation
repos, and components are redeployed via automation when
they need updates or malfunction – a highly-functional, testable,
brute-force approach to dependency management and whole-
system stability. Yes, please.

What’s in it for the IT Hero?

For starters, IT automation is fascinating. Whether you come
at the work from a ‘Dev’ or an ‘Ops’ perspective, working
with deployment tools will provide new insights into security,
databases, scope and program structure, parameterization,
and other details; teach powerful lessons about how to build
apps that are more automation-friendly, scalable, and self-
maintaining; and give you new superpowers to help align dev,
test, and prod.

https://www.opsview.com/
https://xkcd.com/1205/
https://xkcd.com/1319/
https://xkcd.com/1319/
https://devrant.com/rants/1392116/ive-always-elected-to-program-a-lot-of-my-tasks-instead-of-manually-inputting-th
https://www.youtube.com/watch?v=c4nU0eruIjo
https://hbr.org/2010/07/stop-trying-to-delight-your-customers
https://www.fieldboom.com/kano-model

Teamwise, working together on automation gives everyone
a hugely-improved understanding of how your whole IT
stack comes together, and helps everyone climb the value-
chain to make more and more strategic contributions. Senior
engineering types get to see farther than ever, and have new
tools for dealing with architectural and cost/benefit mechanics
affecting your whole business’ viability (e.g., piloting your global
shift towards cloud with greater insight and more degrees of
freedom). More junior folks get to work on components of the
global plan -- making contributions that are long-term-valuable
(i.e., reusable automation elements) while building skills and
awareness.

Flexibility is an additional bonus. As we discuss in companion IT
Hero briefs, being agile can mean volunteering for more intense
collaboration (e.g., pair programming), role exchanges, and
other new behaviors – work that’s geometrically less difficult
if there’s a functional single-source-of-truth that documents
overall architecture and componentry in the form of what are,
basically, human-readable recipes.

Maybe most important, benefits of automation are usually
pretty quantifiable and readily-accepted, even by non-technical
managers. Manual ops takes huge amounts of (usually) highly-
compensated time. Of course, if your management doesn’t get
it, automation skills are 100% transportable, and highly-valued
everywhere.

PUBLIC © 2023 OPSVIEW. 2

opsview.com

Learn to fix outages in 1/10th

the time (or in no time at all),

and you can save millions,

protect your organization

against external risks, and set

yourselves up to move even

faster.

How does this Connect with Monitoring?
Automation turns monitoring from a cranky, complicated, error-
prone post-deployment chore into something that happens
magically when solutions are implemented. Tools like Opsview
Monitor’s integration with Ansible provide a library of functions
that dovetail right into virtual infrastructure deployment, letting
you add hosts, host groups, define clusters, assemble business
service models, etc., then tear it all down again when things
(inevitably) change. Handling monitoring this way – ideally
all the way from dev to test to production – lets you engineer
highly performant, use-case-customized monitoring harnesses
that provide the metrics you need to keep solutions happy and
fix problems when they arise.

Monitoring can also work to trigger a wide variety of automated
mitigations. These can be relatively sophisticated. For example,
evidence of a hardware problem on a Kubernetes node
might trigger node evacuation, teardown, and redeployment
(Kubernetes provides nice features to migrate long-running
workloads or simply deploy new instances of stateless
workloads in available capacity, so this is often easier than
it looks). But even process-level automation (hands off
the infrastructure) can pay off enormously. For example,
automatically resolving fixed incidents (through bi-directional
integration of monitoring with ticketing or other IT Ops
Management solutions) might save twenty minutes per
incident. Doing so over 50 incidents per day, given average IT
staff compensation of $50 USD/hour, could save over $300K in
a year.

Ansible was used to deploy, monitor, and create this BSM model of an Elastic Stack
cluster, all in one pass.

https://www.opsview.com/
https://www.opsview.com/
https://www.opsview.com/
mailto:sales%40opsview.com?subject=
https://github.com/opsview/opsview-ansible-modules
https://github.com/opsview/opsview-ansible-modules
Jess Korn

